A Bayesian nonparametric approach for mapping dynamic quantitative traits.
نویسندگان
چکیده
In biology, many quantitative traits are dynamic in nature. They can often be described by some smooth functions or curves. A joint analysis of all the repeated measurements of the dynamic traits by functional quantitative trait loci (QTL) mapping methods has the benefits to (1) understand the genetic control of the whole dynamic process of the quantitative traits and (2) improve the statistical power to detect QTL. One crucial issue in functional QTL mapping is how to correctly describe the smoothness of trajectories of functional valued traits. We develop an efficient Bayesian nonparametric multiple-loci procedure for mapping dynamic traits. The method uses the Bayesian P-splines with (nonparametric) B-spline bases to specify the functional form of a QTL trajectory and a random walk prior to automatically determine its degree of smoothness. An efficient deterministic variational Bayes algorithm is used to implement both (1) the search of an optimal subset of QTL among large marker panels and (2) estimation of the genetic effects of the selected QTL changing over time. Our method can be fast even on some large-scale data sets. The advantages of our method are illustrated on both simulated and real data sets.
منابع مشابه
Bayesian shrinkage analysis of quantitative trait Loci for dynamic traits.
Many quantitative traits are measured repeatedly during the life of an organism. Such traits are called dynamic traits. The pattern of the changes of a dynamic trait is called the growth trajectory. Studying the growth trajectory may enhance our understanding of the genetic architecture of the growth trajectory. Recently, we developed an interval-mapping procedure to map QTL for dynamic traits ...
متن کاملBAYESIAN FUNCTIONAL MAPPING OF COMPLEX DYNAMIC TRAITS By TIAN LIU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy BAYESIAN FUNCTIONAL MAPPING OF COMPLEX DYNAMIC TRAITS By Tian Liu August 2007 Chair: Rongling Wu Major: Statistics Many quantitative traits of fundamental importance to agricultural, evolutionary, and biomedical genetic research can bett...
متن کاملA semiparametric approach for composite functional mapping of dynamic quantitative traits.
Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL tha...
متن کاملA Bayesian Algorithm for Functional Mapping of Dynamic Complex Traits
Functional mapping of dynamic traits measured in a longitudinal study was originally derived within the maximum likelihood (ML) context and implemented with the EM algorithm. Although ML-based functional mapping possesses many favorable statistical properties in parameter estimation, it may be computationally intractable for analyzing longitudinal data with high dimensions and high measurement ...
متن کاملNonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.
Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 194 4 شماره
صفحات -
تاریخ انتشار 2013